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ABSTRACT 
 
At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost 
prohibitive.  Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly 
three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and 
medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is 
related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D self-
assembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this 
area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A 
focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach 
provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined 
three dimensional patterns. 
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1. INTRODUCTION AND BACKGROUND 
 

The fabrication of three dimensional structures and devices is 
commonplace on the macroscale but becomes increasingly difficult at 
small size scales. This challenge is rooted in the fact that conventional top-
down fabrication at micro and nanoscale was developed primarily for 
integrated circuit fabrication [1].  This fabrication approach is based on the 
transfer of a CAD pattern onto a planar mask and then onto a planar 
substrate, and is thus inherently a two dimensional pattern transfer process. 
A number of methods have been developed to fabricate and pattern three 
dimensional micro and nanoscale objects using top-down methods 
including wafer bonding [2], stereolithography [3], printing [4], focused 
ion beam methods [5], anisotropic etching [6], molding and related 
techniques [1, 7-10]. However, there still exist significant challenges in 3D 
fabrication most notably in the parallel fabrication of precisely patterned 
nanostructures with periodic, curved and angled geometries.  

Self-assembly is a biologically inspired bottom-up approach to 
form ordered structures from constituent units via pre-programmed 
interactions between them. It is well known that atoms can interact with 
each other to form assemblies ranging from small molecules to large 
periodic crystals through covalent, ionic or metallic bonds. In contrast to 
such bonding, the word self-assembly originally was used to describe the 
organization of  molecules using weak interactions such as van der Waals, 
hydrogen bonding or distributed weak electrostatic interactions such as 
interactions between ions and induced dipoles. Early use of the word *self-
assembly* can be traced as far back as the 1960’s when scientists realized 

Figure 1 An example of a self-assembled 3D 
biological nanostructure. Electron 
micrograph average image of the cowpea 
chlorotic mottle virus (CCMV) which infects 
the cowpea plant. Image reprinted from 
reference 11 with permission from Elsevier; © 
1967 Elsevier. This nanostructure with 
icosahedral symmetry self-assembles from 
constituent protein and RNA molecules. 

Invited Paper

Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XI,
edited by Harold H. Szu, Proc. of SPIE Vol. 8750, 87500O · © 2013 SPIE

CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2020878

Proc. of SPIE Vol. 8750  87500O-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/29/2013 Terms of Use: http://spiedl.org/terms



- - - -

1.0

0.8

0.6

0.4

0.2

0.0
02

Experimental
Simulation

0.4 0.6 0.8 1.0 0.2
Frequency (THz)

4 .

eque0n6
H8

cy ( z)
1.0

 

 

that they could reconstitute naturally existing three dimensional biological structures such as viruses from their 
constituent biomolecules [11]. Chemists and biochemists have made significant in the area of three dimensional 
molecular self-assemblies ranging from early advances in biomolecular assembly [12], molecular complexes [13], host-
guest chemistry [14], supramolecules [15], vesicles [16] and reconstituted viruses [11, 17] (Figure 1) to more recent 
research on foldamers [18], metal organic frameworks [19], complex inorganic structures [20], DNA nanostructures [21, 
22], block copolymers [23], peptide nanofibers [24], vesicles and liposomes [25], and synthetic molecular motors [26].  
Since they can feature a range of hierarchical interactions, molecules can be thought of as the most diverse and exquisite 
set of building blocks for self-assembly. However, molecular assemblies often fall apart in non-aqueous media or 
degrade on heating, thereby limiting their applicability. Further, it can be challenging to incorporate the types of modules 

such as high-performance resonators or transistors that would be 
required in optical or electronic circuitry. It is noteworthy that to 
address this challenge, a major recent focus in the area of self-
assembly with biomolecules has been to utilize biomolecules to direct 
the assembly of inorganic nanoparticles such as colloids, nanowires 
and quantum dots [27-29], but integration, function and performance 
still remains a significant challenge.  

Beginning in the 1990’s, researchers began to adapt the 
methodology of self-assembly for use with non-molecular and non-
spherical mesoscale units directed at applications in robotics, optics 
and electronics [30-40]. Mesoscale self-assembly referred to the self-
assembly of millimeter and centimeter sized units. Following in the 
tradition of earlier work in the late 1950s on self-replication with 
mechanical pieces [41], these mesoscale units could be readily 
fabricated by hand and easily visualized by the naked eye thereby 
facilitating the interrogation of model systems to investigate the 
influence of a variety of parameters on self-assembly. Research in 
mesoscale assembly convincingly demonstrated that smart units can 
self-assemble on their own into complex structures based on a variety 
of mechanisms including shape recognition [42], steric constraints 
[43], hierarchy of forces [44] and patterns of binding sites [35, 45]. In 
fact, very complex assemblies could be formed with the appropriately 
designed units. For example, it was shown using 5 millimeter scaled 
truncated octahedra shaped units patterned with devices (light emitting 
diodes), wires, and arrays of low melting point solder bumps, that 3D 
electrical networks could be formed merely on tumbling the units in a 
density matched liquid that was heated above the melting point of the 
solder bumps [35] (Figure 2). Here, what was remarkable was not just 
that the units aggregated but rather that solder bump-on-bump 
connections were formed during assembly, in a well-defined manner. 
Such connections caused the LEDs to connect with each other in 

Figure 2 An example of mesoscale 3D self-assembly with millimeter scaled units. Self-assembly of millimeter scaled 3D
electrical networks with serial connectivity. Reprinted from reference 35 with permission from AAAS; © 2000 AAAS.   

Figure 3 An example of 100 micron scale self-
assembly of polyhedral electromagnetic
metamaterials. These metamaterials enable current
loops to flow in all three dimensions on excitation
with electromagntic radiation resulting in
pronounced peaks in the transmission spectrum.
Reprinted from reference 64; © 2010, American
Institute of Physics. 
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either serial or parallel networks that form the basis of all connections in electronic devices.  

Going down in size from the mesoscale, self-assembly with microscale units has also been used effectively to 
create a variety of three dimensional structures including optomechanical devices [46], curved displays [47], solar cells 
[48], microfluidic networks [49], untethered surgical tools [50, 51], polymer microcapsules [52-55], tissue scaffolds [56, 
57], patterned particles [58-60], and crystals and arrays composed of spherical [61, 62] and polyhedral units [63, 64]. 
One example highlighted in Figure 3 illustrates the hierarchical self-assembly of polyhedral metamaterials using two 
independent self-assembly steps [64]. First, surface tension based solder self-assembly was used to fold up cubes and 
parallelipipeds. The polyhedra were then functionalized with a hydrophobic self-assembled monolayer and a 
hydrophobic adhesive was precipitated on their surfaces causing them to aggregate in water. After self-assembly, the 
adhesive could be cured by UV initiated polymerization to form permanently bonded polyhedral metamaterials. In these 
materials, metallic polyhedra are insulated from their neighbors via the polymeric adhesive coating on their surfaces. 
Hence, the self-assembly approach provides a means to pattern microscale metallic lines in 3D within a dielectric 
background. Since the polyhedra have features in the 100 micron range, they elicit pronounced responses in the THz 
region of the electromagnetic spectrum. Importantly, as compared to stacked metamaterials [65], such polyhedral 
metamaterials allow induced current loops to flow in all three dimensions as can be seen in the inset in Figure 3.  The 
interaction of these current loops result in well pronounced 
spectral peaks and this approach may also enable the creation 
of truly isotropic metamaterials.  

In terms of design, at a minimum, interesting self-
assembly systems must possess three ingredients. These are 
(a) units, (b) interactions, and (c) agitation. The 
accomplishments of mesoscale self-assembly were made 
possible by the ability to readily create a variety of patterned 
units, often made by hand, while those in molecular assembly 
are enabled by the ability to create diverse molecules using 
synthetic organic chemistry or rational peptide or 
oligonucleotide synthesis. Interactions between units can be 
engineered using a variety of chemical and physical means 
such as hydrogen bonding, van der Waals, capillary, 
magnetic, electrostatic and steric forces. In mesoscale 
assembly, agitation was introduced via tumbling, bubbling 
gases, or shaking while on the sub-micron scale, agitation is 
naturally present in thermal energy commonly recognized as 
Brownian motion. Fine tuning of the assembly is achieved by 
manipulating the relative strength of the agitation with respect 
to the various local energy minima; this tuning is an important 
factor in designing assemblies with few defects. Ideally, one 
needs to engineer potential energy surfaces that feature few 
local energy minima while at the same time featuring deep, 
sharp-edged, funnel-shaped global energy minima. For 
example, as shown in Figure 4, when we self-assembled 
cubes by the principle of minimization of surface area of 
hydrophobic regions (indicated by the yellow color) in water, 
we observed that not all patterns work equally well. In fact, 
we studied and modeled this interaction and observed that 
geometric patterns with large overall areas, high angular 
distributions and low radii of gyration minimized defects [66]. 
Essentially, as seen in Figure 4, pattern II results in 
interactions that feature sharp localized energy minima as compared to interactions of units with pattern I which can get 
easily trapped in broad local energy minima. These trapped states are not easily disrupted by agitation and result in 
defective assemblies. The defects can be seen in the assembly shown in the inset where units with pattern I are shifted 
relative to each other. A general theory of designing energy landscapes between solid or deformable units interacting via 
a variety of forces is essential to effective self-assembly, but is lacking. 

Figure 4 Tuning inter-unit interactions in the self-
assembly of cubes via surface patterns.  Schematic,
experimental images, and equilibrium energy diagrams of the
interactions of hydrophobic cubes with two different patterns,
I and II. Reprinted from reference 66; © 2010, American
Chemical Society.  
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This article is focused on the self-assembly of 3D structures with dimensions ranging from 1 to 100 nm using 
non-molecular building blocks and specifically directed towards self-assembly with lithographically patterned units. 
Three dimensional nanoscale self-assembly using non-molecular building blocks is especially challenging for a variety 
of reasons. Firstly, 3D top-down nanoscale patterning is extremely difficult and often cost-prohibitive so it is hard to 
design precisely patterned units and building blocks for self-assembly. The bottom-up growth and spontaneous 
patterning of nanostructures has made great strides [67-71], but it is still not possible to create precisely patterned 3D 
nanostructures. I first describe our results on combining the top-down method of electron beam patterning with the 
bottom-up method of self-assembly via folding to create precisely patterned curved and polyhedral nanostructures. I also 
discuss strategies that can be utilized to form aggregates of nanostructures that are well bonded and form electrical 
connections during assembly.  
 

3. RESULTS AND DISCUSSION 
 
Self-assembly of curved nanostructures 

Patterning strain in thin films can cause them to curve and bend spontaneously, so in principle one can use these 
forces to self-assemble curved nanostructures [72]. An early example was elegantly demonstrated using molecular beam 
epitaxially grown InAs/GaAs bilayer films which spontaneously self-assembled by rolling into tubes with inner 
diameters as small as 2 nm on etching an underlying sacrificial AlAs layer [73]. Indeed, since the pioneering work of 
clockmaker John Harrison in the 18th century, it is well known that well adherent bilayers will spontaneously bend due to 
differences in thermal expansion coefficients [74]. So in principle, one can extend his concept and utilize differential 
stress in bilayers to fabricate 3D curved structures. However, on substituting values for the thermal expansion 
coefficients of common metals in well-established bilayer mechanics models, such as the one derived by Timoshenko 
[75], one quickly realizes that one can only achieve differential strains of a fraction of a percentage using thermal 
expansion even with temperature differences on the order of a hundred degrees. This small magnitude of differential 
strain is only sufficient to curve even very thin (on the order of 1 nm) films with microscale radii but not nanoscale radii 
since the radii of curvature are in the range of 200 x (film thickness). Hence, an important challenge is to understand 
how to utilize deposition and related processing conditions to generate large strains in thin films. One such example is 
the previously mentioned heteroepitaxial deposition of bilayers generating radii of curvature in the range of 
approximately 7 x (film thickness). However, molecular beam epitaxy (MBE) is an expensive and not easily accessible 
process since MBE requires ultra-high vacuum, is a slow process and also typically developed for compound 
semiconductors. Nevertheless, strain engineering with MBE films has been widely utilized to create a variety of 3D self-

Figure 5 Self-assembly of simultaneously curved and patterned 3D nanostructures using surface forces. (A) Schematic of
the process  of generating strain in tin based bilayers during exothermic plasma etching of the underlying silicon. (B) Radii as
small as 20 nm and (C-F) a variety of curved and patterned structures could be self-assembled. The images in panels A, B, D, E, F
are reprinted from reference 81. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The image in panel C is reprinted
from reference 82. © 2010 American Chemical Society.  
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assembled curved nanostructures [76, 77], but similar attempts with bilayers using strain generated by other methods 
such as intrinsic stress in chromium have resulted in 3D structures with only microscale radii [78-80]. In general it is fair 
to say that it is fairly straightforward to curve patterned thin films with micro and millimeter scaled radii, but far more 
challenging to curve patterned thin films with nanoscale radii. 

 In my laboratory, we invented a process to curve thin films with nanoscale dimensions using surface forces [81, 
82] (Figure 5A). Here, strain was generated on inducing coalescence of a grainy low melting point tin (Sn) film, post 
deposition. First, bilayers composed of Sn and nickel, silicon dioxide or alumina were thermally evaporated and could 
also be patterned using electron beam lithography and lift-off processes on silicon wafer substrates. The patterned thin 
films spontaneously self-assembled during plasma etching of the underlying silicon with radii as small as 20 nm (Figure 
5B). We attributed the strain developed in these structures to the coalescence of Sn grains. Starting with rectangular, 
tapered or circular planar geometries, a variety of 3D nanostructures could be formed (Figure 5C, D) and importantly 
they could also be patterned with nanoscale features with a line-width resolution as small as 10 nm using electron beam 
lithography (Figure 5E and 5F). Such nanopatterned 3D curved structures are virtually impossible to achieve using 
alternate methods and it is conceivable that circuits or photonic elements could be incorporated on the curved surfaces to 
enable a variety of new electronic and optical devices such as smart catheters and probes, waveguides and chiral optical 
modules. The process is also highly parallel and accessible; moreover, it is envisioned that surface forces could be used 
to generate such structures with alternate materials including dielectrics and semiconductors.  

Self-assembly of folded nanostructures 

The self-assembly of nanostructures by folding address the need for patterned devices with angled side-walls. 
Why do we need such structures? Firstly, as discussed and exemplified in Figure 2, the creation of patterned building 
polyhedral blocks is critical to the aggregative self-assembly of functional 3D electronic devices and metamaterials. 
Secondly, as opposed to planar modules, three dimensional patterns can elicit novel polarization dependent effects, 
enable the creation of 3-axis sensors that provide angular information [83], and offer the possibility for the creation of 
isotropic metamaterials that can be excited in the visible region of the electromagnetic spectrum.  

 Microscale self-folding has been an active area of research in the MEMS community since the 1990’s [84, 85]. 
While work in other laboratories has focused on folding of structures with few panels, we invented a process to create 
complex 3D structures such as polyhedra (with as many as fourteen faces) using self-folding with two kinds of hinges, 
one of which initiates folding while the other seals the edges [86, 87]. A variety of methods had been used to fold 
microstructures with stressed hinges, surface forces, pneumatics and magnetics comprehensively reviewed in reference 
[10]. However, a central challenge was the creation of smaller sized nanostructures. In 2009, for the very first time, we 
described a process to fold angled structures with overall sizes as small as 100 nm; in addition to the small size of the 
structures, they featured side-wall patterns with a resolution of 15 nm [88] (Figure 6). In addition to forming 
nanostructures with the same materials, heterogeneous integration was also possible so that gold (Au) metal lines could 
be patterned on metallic or dielectric polyhedra. The possibility for heterogeneous and seamless integration with planar 
patterning techniques is a significant highlight of the approach. In fact, planar units could be patterned with multiple 
layers of conventional nanolithography so that it is conceivable that transistors or even integrated circuits could be 
patterned on the side walls of these nanoparticles, which would be virtually impossible to achieve by any other 

Figure 6 Self-assembly of folded nanostructures. Polyhedral nanoparticles and angled nanostructures with precisely patterned
side-walls. Images reprinted from reference 88. © 2009 American Chemical Society.  
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methodology.  
As with the curved structures described in Figure 5, this self-assembly process also occurs during plasma 

etching of the underlying silicon which drives coalescence in Sn hinges. In contrast, here, the Sn hinges are deposited 
only in select regions. The folding angle can be controlled using the processing parameters such as etch time and 
composition of etch gases. There is also considerable versatility in the process in terms of materials, shapes, sizes and 
side-wall patterns [89] (Figure 7). It is also noteworthy that such particles could be formed either as free-standing or 
arrayed structures by tuning process and etch parameters. Future challenges are the integration of transistors and more 
complex optical elements, the creation of ordered arrays, the extension to additional materials, and the mass production 
of such particles. While the self-assembly process itself is highly parallel, the multi-layer nanopatterning in 2D is 
typically a serial process.  

 
Self-assembly by aggregation of nanoscale units 
 
 An important area of 3D nanofabrication is the ability to create artificial metamaterials and 3D electrical 
networks. Looking forward, we envision the possibility to self-assemble 3D polyhedral metamaterials and electronic 
crystals by aggregating the previously described nanopolyhedra patterned with optical or electronic modules (Figure 8). 
While we have self-assembled such crystals on the 100 micron scale using a hierarchical approach as shown in Figure 3, 
their realization on the nanoscale has yet to be demonstrated, mainly due to the need to scale up self-folding of 
lithographically patterned nanopolyhedra, improve yield, and develop sorting strategies to remove defective units. It is 

Figure 8 Conceptual schematic of the self-assembly of metamaterials with precisely patterned nanopolyhedra. Image credits:
Jatinder Randhawa (Gracias Laboratory, JHU). 

Figure 7 Versatility of self-folded nanostructures in terms of size, material composition and side-wall pattern.  SEM images 
of the patterns and folded cubes with a–b) hollow squares, a) lithographically patterned within 13 nm thick Ni panels and b) the
corresponding 100 nm folded cubic structure; c,d) 20 nm thick Au patterns defined with the alphabet patterns J, and U on 34 nm 
thick Ni panels; e,f) round dice-like circular 50 nm thick Au patterns on 50 nm thick Al2O3 panels; g,h) 50 nm thick Au twin loop 
split ring resonators (SRRs) defined on 50 nmthick Al2O3 panels; i,j) 50 nm thick Au single loop SRRs defined on 50 nm thick 
Al2O3 panels; and k,l) 50 nm thick Au double loop SRRs defined on 50 nm thick Al2O3 panels. Reprinted from reference 89. © 2011 
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
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noteworthy that elsewhere such crystals have been formed using unpatterned cubic nanoparticles  via surface interactions 
[90] or magnetic forces [91] which demonstrates that the realization of such materials would indeed be feasible using 
self-assembly processes.  

In order to create such crystals it is necessary to learn 
how to aggregate nanoscale units in 3D. Aggregation of 
nanoscaled units can be achieved using a variety of methods as 
has been realized in the creation of photonic crystals [92], 
nanoparticle aggregates [93-96] or nanowire assemblies [97]. 
The reader is directed to several recent reviews that detail a 
number of methods that can be used for aggregative self-
assembly of sub-micron and nanoparticles [98-103]. For 
example, evaporation induced crystallization of nanoparticles 
can result in exotic disk-like and ribbon-like architectures 
[104]. Capillary forces can also be utilized to create self-
assemblies of nanocrystals and nanowires [105]. Fields and 
flows have been used to direct assembly and create photonic 
crystals [106] and superlattices [91]. However, one limitation 
for engineering practical devices is that aggregative self-
assembly is often achieved using weak interactions so that the 
3D structures formed are mechanically weak and could break 
up or fall-apart in non-aqueous media or upon mechanical 
deformation. Additionally, it can be challenging to form 
electrical connections between nanoscale units during self-
assembly as would be required to form 3D electrical networks.  

We have experimented with methods to form robust 
connections between nanoscale units using hydrophobic 
adhesives [107], solder [108], and diffusion bonding [109] 
(Figure 9). The assemblies themselves could be directed using 
dielectrophoresis [110], magnetic forces [111] or surface 
tension [107]. During self-assembly, the units were bonded 
together by adhesives, solder or the diffusing metal so that they 
were relatively strongly held together and the resulting 
assemblies resisted breakage on mild sonication. Moreover, the 
ability to form electrical connections between nanoscale units 
during self-assembly allowed 3D electrically conductive 
nanowire networks to be formed (Figure 9c), which can be a 
challenge [112]. Our use of solder and diffusion bonding resulted in ohmic connectivity between units, as would be 
required in forming 3D electrical networks by self-assembly.  
 

4. CONCLUSIONS 
 
In conclusion, as we have shown, curving and folding of planar nanopatterns can leverage existing nanopatterning 
infrastructure such as electron beam lithography or nanoimprinting and take the resolution of these methods into the 
third dimension. Consequently we were able to assemble 3D structures with pattern line resolution as small as 10 nm in 
curved and angled geometries, in a highly parallel manner. Further, the aggregation of nanoscale units by self-assembly 
can result in photonic crystals, 3D electrical networks and metamaterials. We anticipate that these nanoscale self-
assembly methods as well as the structures that they enable will find a range of applications in optics, electronics, 
robotics and medicine.  
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Figure 9 Strategies to self-assemble and simultaneously
connect nanoscale units using adhesives, solder and
diffusion bonding. The highlight of the approach is the
formation of permanently bonded and electrically
connected assemblies. The images in panel A are reprinted
from reference 107. © 2004 American Chemical Society.
The images in panel B are reprinted from reference 108.  ©
2006 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. The images in panel C are reprinted from
reference 109. © 2007 American Chemical Society. 
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