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ABSTRACT

Before the invention of orthogonal wavelet systems by Yves Meyer! in 1986 Gabor expansions (viewed as dis-
cretized inversion of the Short-Time Fourier Transform? using the overlap and add OLA) and (what is now
perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on pain-
less expansions by Daubechies, Grossman and Meyer? is a good example for this situation. The description of
atomic decompositions for functions in modulation spaces* (including the classical Sobolev spaces) given by the
author® was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,% 7
more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform
partitions of unity (so-called BUPU’s, first named as such in the early work on Wiener-type spaces by the author
in 19808%).

Watching the literature in the subsequent two decades one can observe that the interest in wavelets “took
over”, because it became possible to construct orthonormal wavelet systems with compact support and of any
given degree of smoothness,’ while in contrast the Balian-Low theorem is prohibiting the existence of corre-
sponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.!? It
is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet,
see!l) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight
was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system
can be constructed as we know by now.

Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of
decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling
from these two situations the common group theoretical background lead to the theory of coorbit spaces,'?13
established by the author jointly with K. Grochenig. Starting from an integrable and irreducible representation
of some locally compact group (such as the ”ax+b”-group or the Heisenberg group) one can derive families of
Banach spaces having natural atomic characterizations, or alternatively a continuous transform associated to
it. So at the end function spaces of locally compact groups come into play, and their generic properties help to
explain why and how it is possible to obtain (non-orthogonal) decompositions.

While unification of these two groups was one important aspect of the approach given in the late 80th, it was
also clear that this approach allows to formulate and exploit the analogy to Banach spaces of analytic functions
invariant under the Moebius group have been at the heart in this context. Recent years have seen further new
instances and generalizations. Among them shearlets or the Blaschke product should be mentioned here, and
the increased interest in the connections between wavelet theory and complex analysis.

The talk will try to summarize a few of the general principles which can be derived from the general theory,
but also highlight the difference between the different groups and signal expansions arising from corresponding
group representations. There is still a lot more to be done, also from the point of view of applications and the
numerical realization of such non-orthogonal expansions.
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1. INTRODUCTION

A good overview of what is nowadays perceived is “Classical Fourier Analysis” is given in the survey talk by
Charles Fefferman'# held at the International Mathematical Congress 1974 which features Calderon-Zygmund
operators, HP-spaces, atomic decompositions and Cotlar’s Lemma, and of course Carleson’s famous Acta paper,'®
on the convergence and growth of partial sums of Fourier series. In fact, in this period the school around E. Stein
started to develop systematically ways to describe the smoothness of functions, using either Bessel potentials
(allowing to describe fractional smoothness, with Sobolev spaces arising as the natural cornerstones for integer
smoothness, positive or negative) or Besov spaces (B;’Q(Rd)), which can be viewed as generalized Lipschitz spaces
(see Stein’s book on Singular Integrals and Differentiability Properties of functions'®). Clearly here the Russian
tradition with work of S. Nikolskii (1905 - 2012)!” and of course even earlier the influential work of S. Sobolev
(e.g.'®). Smoothness is described in a sophisticated way by moduli of continuity (see e.g.!?), typically based
on LP-norms, because a lot of knowledge had been accumulated in the functional analysis and Fourier analysis
community about these spaces, and may not so much because the membership of a function in some LP-space is
such a natural or remarkable property for a given (class of) measurable function.

Another important tool in the background of this development are the remarkable Paley-Littlewood theory,
which is at the basis of decompositions of these spaces for all these function spaces. In fact it provides atomic
decompositions of tempered distributions with the extra property, that the summability conditions of the cor-
responding coeflicients (which are not uniquely determined) in terms of weighted mixed norm spaces allow to
determine the membership of a given function in one of these smoothness spaces (see the work of Frazier and
Jawerth®). For the pioneers in interpolation theory, Jaak Peetre and Hans Triebel, the dyadic decompositions on
the Fourier transform side these “Function Spaces” where a crucial tool in identifying the interpolation spaces,
using either real or complex interpolation methods, for pairs pairs of Banach spaces over R?, arising in analysis,
which in turn allowed them to verify boundedness results for operators between such function spaces. Clearly
the Hausdorff-Young theorem, claiming that the Fourier transform maps L? into L? (with 1/p+1/q = 1) is the
prototypical result in this direction.

In this way also the family of so-called Triebel-Lizorkin spaces Flf,q(Rd) arose (with potential spaces being
special cases, for ¢ = 2 within this family). For a systematic summary of all the known properties of these
spaces (duality, embedding, traces and much more) the reader my consult the books of Hans Triebel. It was also
recognized that the LP-spaces belong to this family, but only for 1 < p < oo, while one should replace L!(R?)
by the Hardy space H'(R?) for p = 1 and its dual, the famous BMO-space.

Given the usefulness of these function spaces for many purposes and the multitude of concepts relying of
them it is well understandable why wavelet theory, which is well adapted to those function spaces, has gained
quickly high recognition in the field of analysis as an important and relatively universal tool. Let us just mention
- as typical examples - a few of them:

theory of PDE in the spirit of L. Hérmander;2°

the theory of tempered distributions in the sense of L. Schwartz;2!

the theory of pseudo-differential operators?? with the idea of micro-local analysis in the background:;

23-25

the theory of Calderon-Zygmund operators;

Nevertheless the reader should be aware, that mathematical analysis provides not only these function spaces,
but a huge variety of alternative spaces. I mean this not just for academic considerations, but for the verification
of questions of practical interest, also for applied scientists. Despite their obvious relevance in the literature one
may promote the idea that perhaps some of those other spaces deserve a more prominent role in our studies.
Clearly the L?(R?) is important, because it is a Hilbert space, and also L*(R?), because it is the natural domain
for the Fourier transform (as long as it is seen as an integral transform).
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2. FUNCTION SPACES AND OPERATORS

While function spaces are considered often only as an auxiliary tool to describe operators, and the general believe
is that one has to choose them from a given relatively small (or large, depending on the knowledge in this field)
reservoir, we would like to emphasize here that the choice of the correct setting may be crucial for a good
description of operators. Often a certain type of continuous transforms are related atomic decompositions are
crucial for the strength of statements that one can make. In this sense the LP-behavior of the Fourier transform
is on the difficult (and content-wise not so satisfactory) side, while on the other hand wavelet expansions make
them well suited for the description of Calderon-Zygmund operators?® while modulation spaces may be useful to
describe slowly time-variant channels,?® as they appear in mobile communication.

2.1 Operators on Families of Normed Spaces

Normally people are happy by either working with individual spaces, say the Hilbert space H = (LQ(Rd), Il ||2),
or some LP-space, and to know that certain operators are bounded on such spaces. Think of the Hausdorff Young
theorem for the FT, or the boundedness of Fourier multipliers. A typical result of this type is the fact, that
for any given p € (1,00) and any rectangular domain B C R? the Fourier multiplier f — F~'(1p - F'f). For
the 1D case this simply means that the ideal low-pass filter, i.e. convolution with the classical SINC kernel is
bounded on each individual L”-space, as long as 1 < p < oo, but (unfortunately) with bounds Cj, > 0 depending
on the value of p, and tending to oo as p — 1 or p — oo, with the well known problem of unboundedness on
(LMR%), [|-[11) resp. (L=(RY), |- ).

It is more in the spirit of interpolation theory to view such results not so much as individual triples (a
given operator T mapping a Banach space (B!, ||-||(")) into another Banach space (B2, || -[|(?)), but rather as
a situation where an operator is defined (maybe in different format, depending on the input) on a whole family
of Banach spaces, small and large, and where the user may be interested to find out what can be said about
the output. Just think of BIBO-systems, where the guarantee is given that bounded input guarantees bounded
output, but then analysis shows that it is also bounded on L! (because it must be a convolution operator with
a bounded measure p as kernel), and finally on the whole family of LP-spaces, now with 1 < p < oo, with a joint
upper bound, namely the total variation norm ||g||m.

2.2 Wiener Amalgam Spaces

Among the many possible function spaces of interest let us feature specifically the so-called Wiener amalgam
spaces. They carry this name because they go back to Wiener’s work on Tauberian theorems. Since he wanted to
include also certain unbounded measures in his consideration he made use of a construction quite similar to that
of an a finite upper Riemann sum (over the whole real line). Such a construction is quite important as it allows
to separate the local from the global effects (e.g. by taking ordinary LP-norms). A good survey of the state of
the art is provided by the article by J. Fournier and J. Stewart?” in the Bull. Amer. Math. Soc.. They consider
only local LP-norms and global #4-summability, but list a long number of interesting applications. Among others
the work of Busby and Smith?® on product convolution operators is very instructive. The idea to allow also for
similar spaces, but e.g. with the Fourier algebra F(L!(R?)) as a “local component” was the motivation of the
introduction of the concept of (at that time names) Wiener-type spaces by the author,® which where then used
in order to create modulation spaces (introduced by the author in 1983,% 529731 and subsequently developed in
great detail). Nowadays modulation spaces are a well established tool, specifically in time-frequency analysis,
and many questions have their natural description in terms of various modulation spaces.

Since the generalization of many concepts (such as continuous linear operators, robustness of constructions
against certain perturbations, such as jitter error analysis in sampling theory) are beyond the scope of this short
note let us try to communicate the very idea using a comparison.

3. BANACH GELFAND TRIPLES

For a motivation, telling us also a little bit how to make use of Banach Gelfand triples, let us recall some basic
facts concerning ordinary numbers resp. the fields to which they belong, and how they are related, practically
and also somehow psychologically.
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3.1 From rational to real and complex numbers

While mathematicians tend to start from an axiomatic setting, and define the axioms of a field, in a minimalistic
way, and derive all the relevant properties from first principles it is more important for engineers to know in which
situation which computational method can be applied without producing wrong results. Minimal complexity of
the description is preferred over maximal range of validity at the cost of complicated notations. On the other
hand over-simplified notations may lead to wrong conclusions and careless argumentation (or discipline) may
leave great uncertainties on the reader’s side.

So instead of discussing at length what kind of ordered and perhaps non-Archemedian fields there may
exist engineering students learn how to use the fields Q of rationals, the real number system R and finally
the complex numbers C, because Euler’s formula allows to make the connection between exponential law and
addition theorems for trigonometric functions. Clearly division can be performed exactly within Q while already
in R one has to do some kind of approximation, while for the complex numbers the inversion is reduced to real
number case (e.g. through polar coordinates). Nevertheless it is clear that they all are just “numbers” and that
one may identify 2/5 € Q with 0.4 € R or 0.4+ 07 € C, as needed.

We have explained this example because it can provide a good guidance to the understanding how Banach
Gelfand triples work and why they are useful. They also consist of a small reservoir of nice object, the so-called
test functions, a bigger one, namely (L?*(R?), || - ||2), which is not only complete but also a Hilbert space. Finally
we go beyond this setting, and the introduction of generalized functions comes into play. They are “as real as a
complex number”, meaning that they are well defined objects, with (hopefully) clear computation rules, which
extend the computations done in the smaller domains usually in a unique fashion. Hence operations such as
duality pairing through “integrals”, namely

(ro)= [ f@la)d,

or convolution, pointwise multiplication or the application of operators (such as the Fourier transform!) are
usually quite well defined on the smaller domain, perhaps even using the good old Riemannian integral, and
have to be properly extended to the other setting (and hence to all the spaces “in between”).

3.2 The Segal Algebra Sy(R%)

The first among all of the modulation spaces which had been introduced (already in 1979, and published in
19813%) by the author was the Segal algebra (So(R?),||-|ls,), which was in fact introduced as a variant of
Wiener’s algebra, which is in modern terminology the Wiener amalgam space W (Cy, £1)(R?). This Segal algebra
was introduced as the Banach space space So(RY) = W (FL!, £1)(R%), which is sometimes also called Feichtinger’s
algebra (see the revised version of Reiter’s book on Harmonic Analysis, coauthored with I. Stegeman3?). Hence
one can say, f € Sp(R) if and only if, after decomposing the function into sum of local pieces (e.g. by using a
sequence of triangular functions of constant shape, adding up to the constant 1), the total sum of the absolute
values of all the Fourier coefficients (over all positions and all frequencies) is finite. It also should be noted
that the same space has been introduced independently at about the same time by J.P. Bertrandias,?* also as a
generalization of standard amalgam spaces as described in the survey by Fournier and Stewart.2”

This space is a Banach space, containing the Schwartz space of rapidly decreasing functions S(R?) as a dense
subspace, but is contained in all the LP-spaces. It is also isometrically translation invariant, and this is the
reason why it is a Segal algebra, following Hans Reiter’s definitions, see3® or the updated version.?? But it is also
Fourier invariant, hence also even isometrically invariant under time-frequency shifts. V. Losert36 has shown that
this algebra (well defined for any LCA group) is uniquely determined by its many good invariance properties.
All the classical summability kernels belong to this space, and this expresses clearly that/why this space can
be considered as a good space of test functions for harmonic analysis in an abstract setting, but also for signal
processing applications. Among others one can show easily that Poisson’s formula holds for any f € So(R%) and
therefore it is a good vehicle to prove e.g. the Shannon Sampling Theorem resp. the fact that sampling on the
time sided corresponds to the periodization on the Fourier side.

For those familiar with Schwartz’s theory of tempered distributions one may say, that So(R?) is a very good
and technically much less challenging space of test functions compared to the Schwartz space, mostly because
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it is a Banach space. In addition it is absolutely sufficient for most engineering applications (except for PDE
applications, and this is just the domain for which this theory was made for?!).

In fact, the Schwartz space S(RY) which is a so-called nuclear Frechet space, i.e. only a topological vector
space with some complicated (although interesting) concept of convergence. This is then needed to define
the continuous linear functions, i.e. the linear mappings o from the test-functions to complex field, which are
continuous, or in other words respect convergence. They have to satisfy the following implication: If f, — fo
(in S(R?) !) then one has to be ensured that o(f,) — o(fp) in C.

In contrast the dual space S¢(R?), i.e. the family of continuous linear functionals in (So(R?),||-||s,) are
easily defined to be just the linear mappings o from So(R?) to C with the property that |o(f)| < C| f||s, for all
f € So(R?). They can be characterized as the space of tempered distributions which have (e.g. with respect to
the Gaussian window) a uniformly bounded short-time Fourier transform. Moreover norm convergence is exactly
uniform convergence of the corresponding spectrograms, while the equally important so-called w*-convergence is
nothing else but the less restrictive uniform convergence over compact sets, which is good enough for applications.
Just think of the fact that even a good audio-recording is representing the piece of music only for the (finite)
duration of the piece and in a finite frequency, only up to 20 kHz.

3.3 The Banach Gelfand Triple (Sp, L2, S¢)(R?)

Although the Banach Gelfand triple (Sp, L2, S¢)(R?%) was first used systematically in the context of Gabor
analysis®”»3® it turned out to be useful in many other situations, in particular in the context of classical Fourier
analysis. Not only is (So(R), ]| - ||s,) a convenient Banach space of bounded, continuous and absolutely Riemann
integrable functions, it is also a domain for Poisson’s formula ), ., f(k) = >, .5 f(k), with absolute convergence
on both sides. Plancherel’s formula, telling us that || f||2 = || f||2 can be derived from this and provides us with the
fact that the Fourier transform is a unitary automorphism of (L?(R?), ||-|2). However, out the outer layer, i.e.
in the dual space one can make the claim that the Fourier transform maps pure frequencies (also called characters
of the LCA group in abstract harmonic analysis) into Dirac (point) measures, which is exactly the continuous
analogue of the claim that the FFT is just a change from one basis (unit vectors) to another orthonormal
basis (namely the pure frequencies). Unfortunately those building blocks are not in L?(R?) anymore, and the
convergence is not the usual one, but rather the so-called w*-convergence, which however is well known (at least
in principle) from probability theory (where the concept of vague convergence is used, e.g. in the formulation of
the central limit theorem).

The concept of Banach Gelfand triple, especially the one based on the Segal algebra So(R?) appears to be
quite similar to that of the usual Gelfand triple, based on the embedding of the Schwartz space S(R?) into
L2(R%) which in turn sits inside the tempered distributions, but in this setting of a rigged Hilbert space the
topologies involved are much less transparent. Other cases where a similar setting appears to be useful is in the
theory of elliptic partial differential operators, which typically map a Sobolev space such as HY(R?) into its dual
H1(R?), its dual space. Together they also form a triple (now of Hilbert spaces), but certain constructions
(such as the kernel theorem) do not work in this setting.

The list of possible applications of the theory of Banach Gelfand triples over So(R%) is long. According to
my view it grew out of the investigations of coorbit spaces in general and the Heisenberg group setting (with
modulation spaces viewed as coorbit space for the Schrodinger representation of the Heisenberg group) and
therefore it is not surprising that the main applications are in this area, but some aspects are relevant for a
much wider range of problems in analysis (up to the claim that the spaces in this triple might be more useful
for applications than LP-theory, at least in some cases), and in particular for the mathematical foundations of
signal processing, in particular for Gabor analysis. For a summary of such results the reader can be referred to
the survey paper by E. Cordero, F. Luef and the author.®

Let us shortly indicate the most striking results which can be formulated within the context of the Banach
Gelfand triple (So, L2, S¢)(RY).

1. The Fourier transform can be viewed as a unitary Gelfand triple isomorphism of the BGT (S, L2, S¢)(R?),
which means that it is unitary at the Hilbert space level (Plancherel’s theorem), but also leaves the other
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layers invariant, with the additional property of mapping the dual space S¢(R?) into itself, both in the
norm and the w*-topology, i.e. preserving w*- convergence (for bounded sequences in (S¢ (R%), || - [|sy));

2. There is a kernel theorem, which extends the classical identification of Hilbert-Schmidt operators with
L2 (R?4)-integral kernels. The operators with kernels in So(R??) are exactly the regularizing operators,
i.e. the bounded operators mapping bounded, w*-convergent sequences in S¢(R?) into norm convergent
sequences in (So(R?), || - ||s, ). In contrast, general bounded linear operators (i.e. linear systems or channels)
from Sy(R?) into S¢(R?) have still a distributional kernel in S¢(R??); these are not just exotic operators,
but ordinary multiplication operators or convolution operators are typically only in this larger class'.

4. COORBIT SPACES AND ATOMIC DECOMPOSITION

As already mention coorbit space theory'? arose as an attempt to isolate the common aspects of e.g. the con-
tinuous short-time Fourier transform and the continuous wavelet transform, resp. the expansions of functions or
distributions using either Gabor system or wavelet bases or frames. The common aspect of both of these settings
(as well as of many similar situations) is the group action in the background, which allows to produce a setting
comparable to coherent states.*® 42 One just needs a so-called integrable, irreducible group representation of
some locally compact group in order to get started, and as we see more and more there are plenty of such groups,
aside of those mentioned above, e.g. recently for example the Blaschke group.*3 45

5. MODULATION SPACES AND THE HEISENBERG GROUP

The theory of modulation spaces, with the STFT (Short-time Fourier transform) as a continuous transform is
connected to the so-called Schrédinger representation of the Heisenberg group,*® which in fact is a so-called
projective representation only, i.e. one has to account for suitable phase factors when one computes the compo-
sition of two TF-shift operators. From the engineering point of view the atoms of the corresponding (Gabor)
expansion of signals are simply discrete subfamilies indexed by (\;);e; within the continuous family of coherent
states, obtained by moving a general non-zero atom (such as the Gauss-function) in phase space, by applying a
for each such A\ = (¢,w) the TF-shift 7(\) = M, T;. In Gabor analysis the typical choice of such a family would
be a lattice of the form aZ x bZ. More recently more general (non-separable resp. non-symplectic) lattices came
into discussion, and in each case one looks for an efficient computation of the canonical dual window § window.
Again group theory is a strong argument allowing meanwhile to find efficient algorithms. First of all the frame
operator
S D (fm(Ng)m(N)g
AEA

commutes with all the TF-shifts used, i.e. with 7(A), A € A, and consequently has the so-called Janssen repre-
sentation (from which the Wexler-Raz principle is derived). Even in fairly complicated situations where direct
computations would be a bit complicated the coefficients for the contributions different from the identity op-
erator in this representation allows to guarantee the invertibility of the Gabor frame operator S = S(g,A), in
fact not only as an operator on the Hilbert space L?(R?), but also simultaneously on each of the layers of the
Banach Gelfand triple, in particular at the Sg-level. Corresponding numerical considerations can be found in
recent papers.‘”"l8

6. SHEARLETS AND THE SHEARLET GROUP

Among the more recent examples of coorbit theory, which came from applications and was motivated by the need
to have needle-like building blocks for image processing applications (similar to curvelets,*%°? or ridgelets®!) the
invention of shearlets in the last decade gave rise to a new family of frames (see the early papers by G. Kutyniok®2
and D. Labate® %) and several other papers showing the usefulness of shearlets for image processing applications,
or for the description of Fourier integral operators.

Once it had been clarified that there is a shearlet group in the background of the continuous shearlet transform
the existence of coorbit theory was of course highly motivating for a group of researchers around Stephan Dahlke,
to establish the corresponding theory of shearlet spaces, atomic decompositions and so on in full details.?6-5?

"No invertible operator can be Hilbert Schmidt, because a compact operator never has a bounded inverse.
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7. LITERATURE, REFERENCES

In this short section we just recollect a few influential papers (at least to the author) of this time. Although
the manuscript?® was around for quite a while, but still unpublished?® it was clear that there are some common
features between atomic decompositions of modulation spaces® in the spirit of Gabor (although the term and
connection to the work of Gabor was not clear at that time and the decomposition of function using building
blocks of constant shape.? Within the theory of function spaces (in the spirit of Triebel and Peetre) the work on
atomic decompositions by Frazier and Jawerth% 6162 (based on the Littlewood-Paley theory) was most influential.
An indication of the usefulness of this transform was provided in.%3 The paper on painless decompositions®* was

emphasizing the analogy between wavelet theory and time-frequency methods.

Of course this is also a place to emphasize the role of the pioneers in interpolation theory, namely Jaak
Peetre® and Hans Triebel with their books.%669 1In fact, it was Jaak Peetre’s paper’® which was providing
the name coorbit spaces in contraposition to orbit spaces, which reminds more of atomic decompositions, with
building blocks (like coherent states) being obtained as the orbit of a given atom (mother wavelet, Gabor atom,
etc.) under a certain unitary (projective) group representation.

Furthermore, some of this papers (providing early version of atomic decompositions, e.g. in the context of
Moebius invariant Banach spaces of analytic functions™ 7?) had a great influence on the creation of coorbit space
theory, as well as the Asterisque work of R. Coifman and R. Rochberg.”™
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typically implies unconditional convergence of the partial sums of the coorbit decompositions).

REFERENCES

[1] Meyer, Y., “De la recherche petroliere & la géometrie des espaces de Banach en passant par les paraproduite.
(From soil investigation to geometry of Banach spaces via paraproducts).,” (1986).

[2] Allen, J. B. and Rabiner, L. R., “A unified approach to short-time Fourier analysis and synthesis,” Proc.
IEFEE 65,(11), 1558-1564 (1977).

[3] Daubechies, I. and Grossmann, A., “Frames in the Bargmann Hilbert space of entire functions.,” Commun.
Pure Appl. Anal. 41(2), 151-164 (1988).

[4] Feichtinger, H. G., “Modulation Spaces: Looking Back and Ahead,” Sampl. Theory Signal Image Pro-
cess. 5(2), 109-140 (2006).

[5] Feichtinger, H. G., “Atomic characterizations of modulation spaces through Gabor-type representations,”
in [Proc. Conf. Constructive Function Theory], Rocky Mountain J. Math. 19(1), 113-126 (1989).

[6] Frazier, M. and Jawerth, B., “Decomposition of Besov spaces,” Indiana Univ. Math. J. 34, 777-799 (1985).

Y

[7] Frazier, M. and Jawerth, B., “The @-transform and applications to distribution spaces.,” in [Function Spaces
and Applications, Proc US-Swed Semin, Lund/Swed, Lect Notes Math 1302, 223-246], (1988).

Proc. of SPIE Vol. 8750 875002-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/29/2013 Terms of Use: http://spiedl.or g/terms



[8] Feichtinger, H. G., “Banach convolution algebras of Wiener type,” in [Proc. Conf. on Functions, Series,
Operators, Budapest 1980], Collog. Math. Soc. Janos Bolyai 35, 509-524, North-Holland, Amsterdam, Eds.
B. Sz.-Nagy and J. Szabados. ed. (1983).

[9] Daubechies, I., “Orthonormal bases of compactly supported wavelets.,” Commun. Pure Appl. Anal. 41(7),
909-996 (1988).

[10] Grochenig, K., Han, D., Heil, C., and Kutyniok, G., “The Balian-Low theorem for symplectic lattices in
higher dimensions,” Appl. Comput. Harmon. Anal. 13(2), 169-176 (2002).

[11] Lemarié, P. G. and Meyer, Y., “Ondelettes et bases hilbertiennes. (Wavelets and Hilbert bases).,” Rev. Mat.
Iberoam. 2, 1-18 (1986).

[12] Feichtinger, H. G. and Grochenig, K., “A unified approach to atomic decompositions via integrable group
representations,” Lect. Notes in Math. 1302, 52-73 (1988).

[13] Feichtinger, H. G. and Grochenig, K., “Banach spaces related to integrable group representations and their
atomic decompositions, I,” J. Funct. Anal. 86(2), 307-340 (1989).

[14] Fefferman, C., “Recent progress in classical Fourier analysis..” Proc. int. Congr. Math., Vancouver 1974,
Vol. 1, 95-118 (1975). (1975).

[15] Carleson, L., “On convergence and growth of partial sums of Fourier series,” Acta Math. 116, 135-157
(1966).

[16] Stein, E. M., [Singular Integrals and Differentiability Properties of Functions], Princeton University Press,
Princeton, N.J. (1970).

[17] Nikol’skij, S. M., [Approzimation of Functions of Several Variables and Imbedding Theorems. Translated
from the Russian by J. M. Danskin.], Die Grundlehren der mathematischen Wissenschaften. Band 205.
Berlin-Heidelberg-New York: Springer-Verlag. VIII, 420 p. DM 108.00 (1975).

[18] Sobolev, S., [Partial Differential Equations of Mathematical Physics], Oxford-London-New York-Paris-
Frankfurt: Pergamon Press. X, 430 p. (1964).

[19] Ditzian, Z. and Totik, V., [Moduli of Smoothness], Springer Series in Computational Mathematics, 9. New
York etc.: Springer- Verlag. IX (1987).

[20] Hormander, L., [The Analysis of Linear Partial Differential Operators II: Differential Operators with Con-
stant Coefficients.], Springer, Berlin, Heidelberg, New York (1983).

[21] Schwartz, L., [Théorie des Distributions. (Distribution Theory). Nouveau Tirage. Vols. 1.], Paris: Hermann.
xii, 420 p. FF 230.00 (1957).

[22] Hormander, L., [The analysis of linear partial differential operators. III: Pseudo-differential operators],
Grundlehren der Mathematischen Wissenschaften, 274, Springer (1985).

[23] Journe, J.-L., [Calderon-Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of
Calderon.], Springer, Berlin, Heidelberg, New York, Tokio (1983).

[24] Meyer, Y., [Ondelettes et Operateurs II: Operateurs de Calderon-Zygmund. (Wavelets and Operators II:
Calderon-Zygmund Operators).], Hermann, Editeurs des Sciences et des Arts, Paris (1990).

[25] Meyer, Y. and Coifman, R. R., [Wavelets: Calderon—Zygmund and Multilinear Operators], no. 48 in Cam-
bridge studies in advanced mathematics, Cambridge University Press, Cambridge (1997).

[26] Grochenig, K. and Strohmer, T., “Pseudodifferential operators on locally compact abelian groups and
Sjostrand’s symbol class,” J. Reine Angew. Math. 613, 121-146 (2007).

[27] Fournier, J. J. F. and Stewart, J., “Amalgams of LP and ¢9,” Bull. Amer. Math. Soc., New Ser. 13, 1-21
(1985).

[28] Busby, R. C. and Smith, H. A., “Product-convolution operators and mixed-norm spaces,” Trans. Amer.
Math. Soc. 263, 309-341 (1981).

[29] Feichtinger, H. G., “Modulation spaces on locally compact Abelian groups,” tech. rep. (January 1983).

[30] Feichtinger, H. G., “Modulation spaces of locally compact Abelian groups,” in [Proc. Internat. Conf. on
Wavelets and Applications], Radha, R., Krishna, M., and Thangavelu, S., eds., 1-56, New Delhi Allied
Publishers, Chennai, January 2002 (2003).

[31] Feichtinger, H. G., Grochenig, K., and Walnut, D. F., “Wilson bases and modulation spaces,” Math.
Nachr. 155, 7-17 (1992).

[32] Feichtinger, H. G., “On a new Segal algebra,” Monatsh. Math. 92, 269-289 (1981).

Proc. of SPIE Vol. 8750 875002-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/29/2013 Terms of Use: http://spiedl.or g/terms



[33] Reiter, H. and Stegeman, J. D., [Classical Harmonic Analysis and Locally Compact Groups. 2nd ed.],
Clarendon Press, Oxford (2000).

[34] Bertrandias, J.-P., “Espaces IP(a) et IP(q),” Groupe de travail d’analyse harmonique I, 1-13, Université
scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1982).

[35] Reiter, H., [Classical Harmonic Analysis and Locally Compact Groups|, Clarendon Press, Oxford (1968).

[36] Losert, V., “Segal algebras with functional properties,” Monatsh. Math. 96, 209-231 (1983).

[37] Feichtinger, H. G. and Zimmermann, G., “A Banach space of test functions for Gabor analysis,” in [Gabor
Analysis and Algorithms: Theory and Applications], Feichtinger, H. G. and Strohmer, T., eds., Applied and
Numerical Harmonic Analysis, 123-170, Birkhduser Boston, Boston, MA (1998).

[38] Feichtinger, H. G. and Kozek, W., “Quantization of TF lattice-invariant operators on elementary LCA
groups,” in [Gabor analysis and algorithms], Feichtinger, H. G. and Strohmer, T., eds., Appl. Numer.
Harmon. Anal., 233-266, Birkhéuser Boston, Boston, MA (1998).

[39] Cobos, F., Fernandez Cabrera, L., Kithn, T., and Ullrich, T., “On an extreme class of real interpolation
spaces.,” J. Funct. Anal. 256(7), 2321-2366 (2009).

[40] Bargmann, V., Butera, P., Girardello, L., and Klauder, J. R., “On the completeness of coherent states,”
Rep. Math. Phys. 2, 221-228 (1971).

[41] Klauder, J. R. and Skagerstam, B.-S., eds., [Coherent States. Applications in Physics and Mathematical
Physics.], World Scientific, Singapore (1985).

[42] Ali, S., Antoine, J.-P., and Gazeau, J.-P., [Coherent States, Wavelets and their Generalizations|, Graduate
Texts in Contemporary Physics, Springer, New York (2000).

[43] Pap, M., “The voice transform generated by a representation of the Blaschke group on the weighted Berman
spaces,” Annales Univ. Sci. Budapest., Sect. Comp. 33, 321-342 (2010).

[44] Pap, M., “Properties of the voice transform of the Blaschke group and connections with atomic decompo-
sition results in the weighted Bergman spaces.,” J. Math. Anal. Appl. 389(1), 340-350 (2012).

[45] Feichtinger, H. G. and Pap, M., “Hyperbolic Wavelets and Multiresolution in the Hardy Space of the
Upper Half Plane,” Blaschke Products and Their Applications: Fields Institute Communications 65, 193—
208 (2013).

[46] Feichtinger, H. G. and Grochenig, K., “Gabor wavelets and the Heisenberg group: Gabor expansions and
short time Fourier transform from the group theoretical point of view,” in [Wavelets :a tutorial in theory
and applications], Chui, C. K., ed., Wavelet Anal. Appl. 2, 359-397, Academic Press, Boston (1992).

[47] Feichtinger, H. G., Grybos, A., and Onchis, D., “Fast approximation of dual Gabor atoms by masking the
adjoint lattice,” preprint .

[48] de Gosson, M. A. and Ounchis, D., “Multivariate symplectic Gabor frames with Gaussian windows,” preprint
(2012).

[49] Candes, E. J. and Demanet, L., “Curvelets and Fourier integral operators.,” C. R. Math. Acad. Sci.
Paris 336(5), 395-398 (2003).

[50] Candes, E. J. and Donoho, D. L., “New tight frames of curvelets and optimal representations of objects
with piecewise ¢? singular-ities.,” Commun. Pure Appl. Anal. 57(2), 219-266 (2004).

[51] Candes, E. J. and Donoho, D. L., “Ridgelets: a key to higher-dimensional intermittency?,” Philos. Trans.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1760), 2495-2509 (1999).

[52] Kutyniok, G. and Sauer, T., “Adaptive directional subdivision schemes and shearlet multiresolution analy-
sis.,” SIAM J. Math. Anal. 41(4), 1436-1471 (2009).

[63] Guo, K. and Labate, D., “Optimally sparse multidimensional representation using shearlets,” STAM J.
Math. Anal. 39(1), 298-318 (2007).

[54] Guo, K. and Labate, D., “Representation of Fourier integral operators using shearlets,” J. Fourier Anal.
Appl. 14(3), 327-371 (2008).

[55] Guo, K. and Labate, D., “Characterization and analysis of edges using the continuous shearlet transform.,”
SIAM J. Imaging Sci. 2(3), 959-986 (2009).

[56] Dahlke, S., Kutyniok, G., Steidl, G., and Teschke, G., “Shearlet coorbit spaces and associated Banach
frames.,” Appl. Comput. Harmon. Anal. 27(2), 195-214 (2009).

Proc. of SPIE Vol. 8750 875002-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/29/2013 Terms of Use: http://spiedl.or g/terms



[57] Dahlke, S., Steidl, G., and Teschke, G., “The continuous shearlet transform in arbitrary space dimensions,”
J. Fourier Anal. Appl. 16(3), 340-364, (2010).

[58] Dahlke, S., Steidl, G., and Teschke, G., “Shearlet coorbit spaces: Compactly supported analyzing shearlets,
traces and embeddings.,” J. Fourier Anal. Appl. 17(6), 1232-1255 (2011).

[59] Dahlke, S., Steidl, G., and Teschke, G., “Multivariate shearlet transform, shearlet coorbit spaces and their
structural properties..” Kutyniok, Gitta (ed.) et al., Shearlets. Multiscale analysis for multivariate data.
Boston, MA: Birkhduser. Applied and Numerical Harmonic Analysis, 105-144 (2012). (2012).

[60] Grossmann, A. and Morlet, J., “Decomposition of functions into wavelets of constant shape, and related
transforms,” in [Mathematics and Physics, Lect Recent Results, Bielefeld/FRG 1983/84], 1, 135-165 (1985).

[61] Frazier, M. and Jawerth, B., “A discrete transform and decompositions of distribution spaces.,” J. Funct.
Anal. 93(1), 34-170 (1990).

[62] Frazier, M. and Jawerth, B., “Applications of the ¢ and wavelet transforms to the theory of function
spaces.,” in [Ruskai, Mary Beth (ed) et al, Wavelets and their Applications Boston, MA Etc: Jones and
Bartlett Publishers 377-417], (1992).

[63] Kumar, A., Fuhrmann, D. R., Frazier, M., and Jawerth, B. D., “A new transform for time-frequency
analysis.,” IEEE Trans. Signal Process. 40(7), 1697-1707 (1992).

[64] Daubechies, I., Grossmann, A., and Meyer, Y., “Painless nonorthogonal expansions,” J. Math. Phys. 27,
1271-1283 (May 1986).

[65] Peetre, J., [New thoughts on Besov spaces], Duke University Mathematics Series, No. 1, Mathematics
Department, Duke University (1976).

[66] Triebel, H., [Theory of Function Spaces.], vol. 78 of Monographs in Mathematics, Birkhauser, Basel (1983).

[67] Triebel, H., [Theory of Function Spaces II], Monographs in Mathematics 84, Birkh&user, Basel (1992).

[68] Triebel, H., [The Structure of Functions.], Birkhauser, Basel (2001).

[69] Triebel, H., [Theory of Function Spaces III], vol. 100 of Monographs in Mathematics, Birkhauser (2006).

[70] Peetre, J., “Paracommutators and minimal spaces.,” in [Operators and Function Theory, Proc NATO Adv

Study Inst, Lancaster/Engl 1984, NATO ASI Ser, Ser C 153, 163-224], (1985).

[71] Arazy, J., Fisher, S., and Peetre, J., “M0obius invariant spaces of analytic functions.,
I, Proc Spec Year, College Park/Md 1985-86, Lect Notes Math 1275, 10-22], (1987).

[72] Arazy, J., Fisher, S. D., and Peetre, J., “Hankel operators on weighted Bergman spaces.,” Amer. J.
Math. 110(6), 989-1053 (1988).

[73] Coifman, R. R. and Rochberg, R., “Representation theorems for holomorphic and harmonic functions in
lspp.,” Ast’erisque 77, 11-66 (1980).

[74] Heil, C. and Walnut, D. F., “Continuous and discrete wavelet transforms,” STAM Rev. 31, 628-666 (1989).

[75] Walnut, D. F., Weyl-Heisenberg wavelet expansions: Existence and stability in weighted spaces., PhD thesis,
University of Maryland, College Park, College Park, MD (1989).

[76] Heil, C., “Wavelets and frames,” in [Signal Processing Part I: Signal Processing Theory, Proc Lect, Min-
neapolis, MN (USA) 1988, IMA Vol Math Appl 22], 147-160 (1990).

[77] Walnut, D. F., [An Introduction to Wavelet Analysis.], Birkhduser (2002).

[78] Heil, C., [A Basis Theory Primer. Ezpanded ed.], Applied and Numerical Harmonic Analysis, Basel:
Birkhduser (2011).

[79] Donoho, D. L. and Stark, P. B., “Uncertainty principles and signal recovery,” SIAM J. Appl. Math. 48(3),
906-931 (1989).

[80] Feichtinger, H. G., “Coherent frames and irregular sampling,” in [Recent Advances in Fourier Analysis and
its Applications, Proc NATO/ASI, IL Ciocco/Italy 1989], Byrnes, J. and Byrnes, J., eds., NATO ASI Ser.,
Ser. C 315, 427440, Kluwer Acad. Publ. (1989).

[81] Grochenig, K., “Describing functions: atomic decompositions versus frames,” Monatsh. Math. 112(3), 1-41
(1991).

" in [Complex Analysis

Proc. of SPIE Vol. 8750 875002-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/29/2013 Terms of Use: http://spiedl.or g/terms



