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ABSTRACT

This paper presents various source separation methods that utilize multiple microphones. We classify them
into two classes. Methods that fall into the first class apply independent component analysis (ICA) or Gaussian
mixture model (GMM) to frequency bin-wise observations, and then solve the permutation problem to reconstruct
separated signals. The second type of method extends non-negative matrix factorization (NMF) to a multi-
microphone situation, in which NMF bases are clustered according to their spatial properties. We have a unified
understanding that all methods analyze a time-frequency representation with an additional microphone axis.

Keywords: Source separation, Short-time Fourier transform, Time-frequency representation, Independent com-
ponent analysis, Gaussian mixture model, Non-negative matrix factorization, Permutation problem

1. INTRODUCTION

Many research efforts have been devoted to separate audio sources mixed in a real-room situation.1, 2 If the
mixed signals are captured with multiple microphones, we can exploit the spatial diversity of the sources, and
therefore expect good separation.

In this paper, we explain various audio source separation methods that utilize multiple microphones. Partic-
ularly, we focus on time-frequency representations that are obtained by applying a short-time Fourier transform
(STFT) to the observed signal. Then, observed signals at multiple microphones are represented as a tensor that
has frequency, time, and microphone axes, as shown in Fig. 1.

The methods described in this paper fall into two categories depending on along which axis the tensor of the
observed signals is sliced in order to apply a basic statistical tool. The methods in the first category (shown
in the top part of Fig. 1) slice the tensor in a frequency bin-wise manner and apply independent component
analysis (ICA)3, 4 or a Gaussian mixture model (GMM)5 to the sliced matrices with a time frame axis and a
microphone axis. The methods in the second category (shown in the bottom part of Fig. 1) slice the tensor in
a microphone-wise manner and apply non-negative matrix factorization (NMF)6, 7 to the sliced matrices with a
frequency bin axis and a time frame axis.

The methods in the first category need to resolve the permutation ambiguities8 that inherent in the ICA
or GMM solutions. There have been methods designed to resolve the ambiguities as a post-processing.9, 10 As
more advanced approaches, independent vector analysis (IVA)11–13 and unified statistical models14, 15 have been
proposed for resolving the permutation ambiguities simultaneously with ICA and GMM, respectively.

The methods in the second category need to cluster frequency sound patterns extracted as NMF bases for
each source. Multichannel NMF16, 17 is a way of estimating the information related to the source location for
each NMF basis, and clustering the NMF bases according to the estimated information.

This paper is organized as follows. The next section formulates the source separation problem. Sections 3
and 4 describe the two categorized methods. Section 5 concludes this paper.
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Figure 1. Time-frequency-microphone representation (left) and its slices (right) with corresponding audio source separation
methods.

2. PROBLEM FORMULATION

2.1 Mixing Process

Let s1, . . . , sN be N source signals and x1, . . . , xM be M microphone observations. The convolutive mixture
model is formulated as

xm(t) =
N∑

n=1

hmn ∗ sn(t) , m = 1, . . . , M , (1)

where t represents time, and hmn represents the impulse response from source sn to microphone xm. If we apply
a short-time Fourier transform (STFT) with a sufficiently long window to cover the main part of the impulse
responses, the convolutive mixture model (1) can be approximated as an instantaneous mixture model:18, 19

xijm =
N∑

n=1

himnsijn , i = 1, . . . , I, j = 1, . . . , J, m = 1, . . . , M , (2)

where i and j represent the frequency-bin index and time frame index, respectively. The number I of frequency
bins is defined according to the sampling frequency and the STFT window length. The number J of time frames
is defined according to the amount of STFT shift and the length of the microphone observation signals.

In this way, we obtain the time-frequency representations, Eq. (2), of the microphone observations.
They can be compactly represented with an I × J ×M complex-valued tensor X, [X]ijm = xijm, as the left
side of Fig. 1 shows. Here we define some vector notation for conciseness: xij = [xij1, . . . , xijM ]T ∈ CM for M
microphone observations, and hin = [hi1n, . . . , hiMn]T ∈ CM for the frequency response from source n to all the
microphones at frequency bin i. Then, Eq. (2) becomes

xij =
N∑

n=1

hinsijn , i = 1, . . . , I, j = 1, . . . , J . (3)
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2.2 Source Separation

The purpose of audio source separation is to obtain N separated signals y(n)
m , n = 1, . . . , N that correspond to N

source signal components observed at a microphone m. In this paper, the separation process is conducted for a
time-frequency representation to obtain yijmn, which is a separated signal component for source n at frequency
bin i, time frame j, and microphone m. By applying inverse STFT to yijmn for all i, j, we obtain a time domain
separated signal y(n)

m (t). Let us define a vector y(n)
ij = [yij1n, . . . , yijMn]T ∈ CM again for conciseness.

3. METHODS BASED ON FREQUENCY BIN-WISE SEPARATION

This section describes source separation methods based on frequency bin-wise operations. As shown in the top
half of Fig. 1, in such methods, we obtain an M ×J matrix Xi = [xi1, . . . ,xiJ ] for each frequency bin i by slicing
the observation tensor X of a time-frequency-microphone representation.

3.1 Linear Filters

First, we describe the source separation method that involves constructing linear filters in a frequency bin-wise
manner. If we obtain prior knowledge about the locations of sources or the time periods when a particular source
is absent, beamforming techniques can be utilized. However, if such prior knowledge is unavailable, we generally
employ ICA3, 4 to construct the linear filters.

ICA obtains separated signals y̆ij = [y̆ij1, . . . , y̆ijN ]T ∈ CN by a linear transformation

y̆ij = Wixij , j = 1, . . . , J (4)

with a separation matrix Wi of size N ×M . The matrix Wi is optimized so that the distribution of the vector
elements y̆ijn, j = 1, . . . , J is far from a Gaussian distribution. Various optimization learning rules have been
proposed, for example FastICA3 or one based on natural gradient.4, 20 In the learning rule, a non-linear function
is utilized to evaluate how similar or different the distribution of each element y̆ijn is compared with the Gaussian
distribution. For a complex-valued variable obtained as a result of STFT, a polar coordinate based non-linear
function21 is effective.

There is scaling ambiguity in an ICA solution. For an audio source separation task, the scaling ambiguity
is resolved by trying to represent the observed signals at microphones with scaled separated signals. For that
purpose, we calculate the inverse matrix Ai = [ai1, . . . ,aiN ] = W−1

i or the Moore-Penrose pseudo inverse matrix
Ai = [ai1, . . . ,aiN ] = W+

i of the separated matrix. And by multiplying it on both sides of (4), we have

Aiy̆ij =
N∑

n=1

ainy̆ijn = xij . (5)

Then we obtain a vector y(n)
ij of scaled (ambiguity-resolved) separated signals as

y(n)
ij = ainy̆ijn . (6)

3.2 Time-Frequency Masking

Second, we describe a source separation method that employs time-frequency masking, in which sparseness is
assumed for the frequency-domain sources sijn.22, 23 The sparseness of a source can be characterized by the fact
that the source amplitude is rarely large and is close to zero most of the time. Frequency-domain speech or
music sources are good examples of sparse sources. When such sources are mixed, we can assume that at most
only one source signal makes a large contribution to each time-frequency observation. Thus, the mixture model
(2) can be further approximated as

xijm ≈ himn̄sijn̄ (7)

where n̄ = n̄(i, j) ∈ {1, . . . , N} is the index of the source that has the largest amplitude, and depends on each
time-frequency slot (i, j).
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In the method based on time-frequency masking, we need to estimate which source has the largest amplitude
for each time frequency slot (i, j). For that purpose, we employ a clustering method for observation vectors xij

to calculate the posterior probability P (Cn|xij) that a vector xij belongs to a cluster Cn. Then, time frequency
masks are made by

Mijn =
{

1 p(Cn|xij) ≥ p(Cn′ |xij), ∀n′ �= n
0 otherwise,

(8)

and separated signals are obtained by
y(n)

ij =Mijnxij . (9)

In terms of clustering methods, one based on an anechoic propagation model24, 25 is easy and simple, and works
well under low reverberant conditions. However, to cope with more complicated real-room sound propagation,
frequency bin-wise clustering has been proposed.10 Specifically, a Gaussian mixture model (GMM)5

p(xij |θ) =
N∑

n=1

αin p(xij |ain, σin) (10)

with a complex Gaussian density function of the form10

p(x|ain, σin) =
1

(πσ2
in)M−1

exp
(
−||x− (aH

inx) · ain||2
σ2

in

)
(11)

is assumed for each frequency bin i, and we estimate a parameter set θ = {ai1, σi1, αi1, . . . ,aiN , σiN , αiN} that
maximizes the likelihood p(Xi|θ) =

∏J
j=1 p(xij |θ) of the matrix Xi. In (10), ain is the mean vector, σin is the

variance, and αin is the mixture ratio of the n-th cluster. After the parameter set is estimated, the posterior
probabilities used in (8) is given by

p(Cn|xij) =
αinp(xij |ain, σin)∑N

n=1 αinp(xij |ain, σin)
. (12)

3.3 Post-processing for Permutation Alignment

The method based on ICA or GMM, described in Subsections 3.1 or 3.2, performs a source separation task
in a frequency bin-wise manner. Therefore, we need to align the permutation ambiguity of the ICA or GMM
results in each frequency bin so that a separated signal in the time domain contains frequency components from
the same source signal. This problem is well known as the permutation problem of frequency-domain BSS.8

Although various approaches to the permutation problem have been proposed,26 the following approach based
on dominance measures9, 10 performs very well.

When using ICA to construct linear filters, we employ the power ratio

r
(n)
i (j) =

||y(n)
ij ||2∑N

n=1 ||y(n)
ij ||2

(13)

of scaled separated signals (6) as a dominance measure.9 On the other hand, when using a GMM for time-
frequency masking, we employ the posterior probability (12)

r
(n)
i (j) = p(Cn|xij) (14)

as a dominance measure.10 After calculating the dominance measure, we basically interchange the indices n of
separated signals so that the correlation coefficient ρ(r(n)

i , r
(n)
i′ ) between the dominance measures at different

frequency bins i and i′ is maximized for the same source. The optimization procedure is described in detail in a
reference.10
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Figure 2. Frequent sound patterns are extracted by NMF as its bases.

3.4 Simultaneous Permutation Alignment
The last subsection describes a way to solve the permutation problem by post-processing after ICA or GMM.
This subsection, on the other hand, introduces some methods in which the permutation problem is solved
simultaneously with the source separation procedure.

Regarding the linear filters (i.e., ICA) described in Subsection 3.1, independent vector analysis (IVA)11–13 is
the corresponding method. With IVA, basically the same linear filter is constructed as with ICA (4). However,
the learning rule for the separation matrix Wi is different from that of ICA, and the non-linear function used in
the rule depends on the separated signals of all the frequency bins y̆1jn, . . . , y̆Ijn.

Regarding the time-frequency masking described in Subsection 3.2, methods with unified statistical models
were recently proposed.14, 15 More specifically, in addition to frequency bin-wise clustering based on a GMM,
those methods employ other statistical models for the source signal activities and/or the direction of arrival of
sources, and have derived inference algorithms that optimize all the model parameters simultaneously.

4. METHOD BASED ON FREQUENT SOUND PATTERN EXTRACTION

This section describes a source separation method based on frequent sound pattern extraction. More specifically,
it is based on non-negative matrix factorization (NMF),6, 7 as depicted in the bottom half of Fig. 1.

4.1 Standard Single-channel NMF
This subsection reviews standard single-channel NMF. Let the observation tensor X be sliced to obtain an I ×J
matrix X(m), [X(m)]ij = xijm, for each microphone m.

There are several distance/divergence metrics proposed for NMF. In this paper, we describe NMF with
Itakura-Saito (IS) divergence, IS-NMF,27 which is recognized as being highly suited to audio modeling and
separation. The NMF input should be a matrix with non-negative elements. Thus, we calculate the squared
absolute value

ẍijm = |xijm|2 = xijmx∗
ijm (15)

of xijm, and construct a non-negative matrix Ẍ(m), [Ẍ(m)]ijm = ẍijm. Then, we factorize this I × J matrix into
the product

Ẍ(m) ≈ TV (16)

of an I × K matrix T and a K × J matrix V. Here, K is the number of NMF bases. The matrix elements
tik = [T]ik, vkj = [V]kj of the factored form should also be non-negative. Figure 2 shows an example of NMF
applied to an audio signal. Five sound patterns are extracted as five NMF bases shown in matrix T. Matrix V
indicates when each basis becomes active with its intensity.

Algorithms for NMF minimize the divergence between the given matrix Ẍ(m) and its factored form TV. Let
us define

x̂ij =
K∑

k=1

tikvkj (17)
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Figure 3. Multichannel extension of NMF achieves audio source separation by clustering NMF bases according to their
spatial properties.

as the element that should be equal to ẍijm. Then, the IS divergence between Ẍ(m) and TV is defined as

DIS(Ẍ(m), {T,V}) =
I∑

i=1

J∑
j=1

dIS(ẍijm, x̂ij) , (18)

dIS(ẍijm, x̂ij) =
ẍijm

x̂ij
− log

ẍijm

x̂ij
− 1 . (19)

The IS divergence defined by (18) can be minimized by the following manner. First, we initialize the elements
of matrices T and V with random non-negative numbers. Then, we apply the following update rules until
convergence:28

tik ← tik

√√√√∑j
ẍijm

x̂ij

vkj

x̂ij∑
j

vkj

x̂ij

, (20)

vkj ← vkj

√√√√∑i
ẍijm

x̂ij

tik

x̂ij∑
i

tik

x̂ij

. (21)

These update rules are called multiplicative, since another non-negative value is multiplied with the element
before the update.

For the multichannel extension described in the next section, here we explain a generative model related to
the formulation of IS-NMF. Suppose that each of the elements xijm of the observation X(m) is generated from
a zero-mean complex Gaussian distribution Nc(xijm |0, x̂ij) with variance x̂ij . Then, the maximization of the
log-likelihood of the observation

log p(X(m)|θ) =
I∑

i=1

J∑
j=1

logNc(xijm|0, x̂ij) (22)

is equivalent to the minimization of the IS divergence defined by (18) with θ = {T,V}.17

4.2 Multi-channel NMF (without Basis Clustering)
This subsection and the next discuss multichannel extensions of NMF. The purpose of the extension is to cluster
NMF bases and to obtain source separation results as shown in Fig. 3. We begin with the simplest form where
each NMF basis is attached to its own spatial property. In the next subsection, we will cluster the bases by
sharing spatial properties.

For the multichannel extension of IS-NMF, we extend the generative model explained in the last subsection
to a multichannel case. Suppose that each observation vector xij = [xij1 , . . . , xijM ]T ∈ CM for M microphones is
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generated from a multivariate complex Gaussian distribution Nc(xij |0, X̂ij) with mean 0 and covariance matrix
X̂ij . Then, as with (22), we consider the log-likelihood

log p(X|θ) =
I∑

i=1

J∑
j=1

logNc(xij |0, X̂ij) (23)

of the time-frequency-microphone tensor X. Now, let us consider a factored form, similar to (17), for this
multichannel extension.

As Fig. 3 shows, we associate spatial properties with the NMF bases T. More specifically, we introduce an
M ×M matrix Hik for an element tik of T. Then, the covariance matrix X̂ij is modeled as

X̂ij =
K∑

k=1

Hiktikvkj . (24)

Matrix Hik should be Hermitian positive semidefinite to guarantee non-negativity in a multichannel sense. The
maximization of the log-likelihood (23) is equivalent to the minimization of the multichannel IS divergence

DIS(Ẍ, {T,V,H}) =
I∑

i=1

J∑
j=1

dIS(Xij , X̂ij) , (25)

dIS(Xij , X̂ij) = tr(Xij X̂
−1
ij )− log det XijX̂

−1
ij −M (26)

where tr(B) =
∑M

m=1 bmm is the trace of a matrix B, det is the determinant, and Xij = xijxH
ij is the outer

product of the observation vector. And Ẍ in (25) is a hierarchical matrix that has such outer products as its
elements [Ẍ]ij = Xij .

The divergence defined by (25) and (26) is minimized by repeating the following update rules.17

tik ← tik

√√√√∑j vkjtr(X̂−1
ij Xij X̂

−1
ij Hik)∑

j vkjtr(X̂−1
ij Hik)

(27)

vkj ← vkj

√√√√∑i tiktr(X̂−1
ij Xij X̂

−1
ij Hik)∑

i tiktr(X̂−1
ij Hik)

(28)

These update rules reduce to those (20)-(21) of the single-channel counterpart if we assume M = 1, Xij = ẍijm,
Hik = 1. For updating Hik, the algebraic Riccati equation

HH
ikAHik = B (29)

is solved with
A =

∑
j

vkj X̂
−1
ij (30)

B = H′
ik

⎛
⎝∑

j

vkjX̂
−1
ij Xij X̂

−1
ij

⎞
⎠H′

ik (31)

where H′
ik is the matrix before the update.
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4.3 Multi-channel NMF (with Basis Clustering)
This subsection modifies the formulation of the multichannel NMF in order to cluster K matrices Hi1, . . . ,HiK

into N classes. Let us introduce a new matrix Z of size N × K. The elements znk indicate whether the k-th
matrix belongs to the n-th class (znk = 1) or not (znk = 0). Replacing Hik in (24) with

∑N
n=1 Hinznk, we have

X̂ij =
K∑

k=1

(
N∑

n=1

Hinznk

)
tikvkj . (32)

The definition of the multichannel IS divergence (26) is still valid even if we change the formulation of X̂ij as
above.

Now, to optimize the newly introduced matrix Z, [Z]nk = znk, in the same manner as that employed
for matrices T and V, let us redefine znk as continuous values to satisfy znk ≥ 0 and

∑N
n=1 znk = 1. We

consider this redefinition corresponds to estimating the expectation of znk according to the posterior probability
p(znk = 1|X,T,V,H) instead of the value znk itself.

The multichannel NMF after replacing (24) with (32) is performed by the following update rules:17

tik ← tik

√√√√∑n znk

∑
j vkjtr(X̂−1

ij Xij X̂
−1
ij Hin)∑

n znk

∑
j vkjtr(X̂−1

ij Hin)
(33)

vkj ← vkj

√√√√∑n znk

∑
i tiktr(X̂−1

ij Xij X̂
−1
ij Hin)∑

n znk

∑
i tiktr(X̂−1

ij Hin)
(34)

znk ← znk

√√√√∑i,j tikvkjtr(X̂−1
ij XijX̂

−1
ij Hin)∑

i,j tikvkjtr(X̂−1
ij Hin)

(35)

For updating Hin, the algebraic Riccati equation

HH
inAHin = B (36)

is solved with
A =

∑
k

znktik
∑

j

vkj X̂
−1
ij (37)

B = Hin

⎛
⎝∑

k

znktik
∑

j

vkj X̂
−1
ij Xij X̂

−1
ij

⎞
⎠Hin . (38)

For znk, unit-norm normalization znk ← znk / (
∑

n znk) should follow (35) to satisfy the constraint
∑N

n=1 znk = 1.

Source separation results are obtained with the multichannel Wiener filter

y(n)
ij =

(
K∑

k=1

znktikvkj

)
HinX̂−1

ij xij (39)

with X̂ij being defined in (32), after T, V, H, Z are optimized by the above update rules.

5. CONCLUSION

In this paper, we tried to provide a unified view of audio source separation with multiple microphones. Regarding
experimental results related to the described methods, please refer to the corresponding references. In general,
the methods in Section 3 are good at separating speech sources, whereas the methods in Section 4 are good at
separating music sources. The multichannel NMF described in Subsections 4.2 and 4.3 is a more recent research
result, and still requires work on, for example, reducing the computational time. We hope that many researchers
are interested in audio source separation and will develop many effective methods.
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