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ABSTRACT

Computer-aided medical image analysis has been widely used in clinics to facilitate objective disease diagnosis.
This facilitation, however, is often qualitative instead of quantitative due to the analysis challenges associated
with medical images such as low signal-to-noise ratio, signal dropout, and large variations. Consequently, physi-
cians have to rely on their personal experiences to make diagnostic decisions, which in turn is expertise-dependent
and prone to individual bias.

Recently, low-rank modeling based approaches have achieved great success in natural image analysis. There
is a trend that low-rank modeling will find its applications in medical image analysis. In this review paper,
we like to review the recent progresses along this direction. Concretely, we will first explain the mathematical
background of low-rank modeling, categorize existing low-rank modeling approaches and their applications in
natural image analysis. After that, we will illustrate some application examples of using low-rank modeling in
medical image analysis. Finally, we will discuss some possibilities of developing more robust analysis methods
to better analyze cardiac images.
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1. INTRODUCTION

In many areas of image analysis, the latent structure underlying image data is assumed to be a low-dimensional
subspace. Multiple vectorized images will form a low-rank matrix. Specific examples include background images
under different illuminations, dynamic textures with periodicity, a group of similar shapes, and 3-D trajectories
of feature points on a rigid object. Therefore, relevant tools such as principal component analysis have been
widely used in various problems to explore the low-rank structure of data. In early literatures, the low-rank
property of data was often used in preprocessing for dimension reduction or pattern extraction instead of being
combined with other features in a unified model to provide a complete solution. A possible reason is the difficulty
of rank minimization. Also, it is hard for the conventional approaches to handle outliers or missing values in
data. Recent advances in low-rank modeling have proposed powerful tools such as nuclear norm relaxation,1

robust principal component analysis,2 and matrix completion3 for data analysis.

In this paper, we will review the mathematical background of low-rank modeling, recent progresses in this
area, and state-of-the-art algorithms to solve related optimization problems with applications in natural image
analysis. After that, we will illustrate some examples of using low-rank modeling in medical image analysis.
Finally, we will discuss some possibilities of developing more robust algorithms to better analyze cardiac images
based on low-rank modeling.

2. MATHEMATICAL BACKGROUND

In many research fields, the high dimensionality of data brings great challenges to data analysis. Typical examples
include images in vision problems, documents in natural language processing, users’ ratings in recommender
systems, and gene expression profiles in bioinformatics. Fortunately, the high-dimensional data usually lie in a
subspace with limited dimensions. This fact greatly reduces the complexity of the problems we face.
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If we represent one image as a column vector and arrange related images as columns of a matrix D ∈ Rm×n,
the corresponding data matrix D should read as

D = X + E, (1)

where X is a low-rank matrix, i.e. rank(X)� min(m,n), and E represents noise in measurements. A conventional
approach to finding the low-rank approximation is by minimizing

min
X
‖D−X‖2F ,

s.t. rank(X) ≤ k, (2)

where ‖Y‖F =
√∑

i,j y
2
ij denotes the Frobenious norm. Such a minimization is to seek the best rank-k estimate

of D in a least-squares sense. The minimization in (2) can be solved analytically by using singular value
decomposition (SVD).4 According to the matrix approximation lemma (Eckart-Young-Mirsky theorem),5 the
solution to (2) is given by

X∗ =

k∑
i=1

σiuiv
T
i , (3)

where {ui}, {vi}, and {σi} for i = 1, · · · , k are the first k left singular vectors, right singular vectors, and singular
values of D, respectively. The vectors u1, · · · ,uk also provide a set of orthonormal bases for the low-dimensional
subspace that can best embed the data. This procedure corresponds to Principal Component Analysis (PCA)6

in statistics.

PCA has become one of the most popular tools for data analysis because of its analytical solution in computa-
tion and the optimality under the assumption of i.i.d. Gaussian noise. However, it is limited in real applications
when part of the data are grossly corrupted or missing.2 Inspired by the recent advances of sparse learning
and convex optimization, many new low-rank modeling-based algorithms have been proposed to address the
challenges faced by traditional methods. In the following section, we like to introduce two of the most popular
models.

2.1 Robust Principal Component Analysis

While PCA is optimal in the case of i.i.d. Gaussian noise, it can be easily corrupted by a few gross noisy points
in data.7 The reason is that it adopts the sum of squared residues to measure the data fidelity, which is not
robust to outliers. Previous efforts towards the robust low-rank fitting tried to replace the squared penalty
used in (2) with a more robust penalty function such as the Geman-McClure function7 or the `1-penalty.8 The
limitation is that these methods use the alternating algorithms to solve the models. Thus, the solution depends
on initialization and its optimality cannot be guaranteed.

Recently, people have started to solve the robust low-rank matrix recovery by sparse and low-rank decompo-
sition, where the data matrix D is decomposed as the sum of a low-rank component X and a sparse component E
by minimizing the rank of X and the cardinality of E simultaneously. The surprise message is that, under some
mild assumptions, the low-rank matrix can be exactly recovered by the following convex optimization method
named Principal Component Pursuit (PCP):2

min
X,E

‖X‖∗ + λ‖E‖1,

s.t. X + E = D. (4)

Here, the nuclear norm ‖X‖∗ and the `1-norm ‖E‖1 are minimized, which are the convex surrogates of rank
and cardinality, respectively. Candès et al.2 and Chandrasekaran et al.9 both analyzed the conditions for exact
recovery. Briefly speaking, it has been proven in Candès’s work2 that X and E can be exactly recovered with
high probability if the singular vectors of X are not sparse and the nonzero entries of E are sufficiently sparse
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and randomly distributed. Moreover, a theoretical choice of parameter λ is provided to make the exact recovery
possible.

The basic model in (4) has been extended to handle more complicated scenarios. For example, stable PCP10

relaxes the equality constraint in (4) as ‖X + E − D‖F ≤ σ to allow the existence of Gaussian noise. In
implementation, the following problem is solved

min
X,E

‖X‖∗ + λ‖E‖1 +
µ

2
‖X + E−D‖2F , (5)

where µ is a constant determined by the noise level. Other examples include outlier pursuit via group sparsity11

and the matrix recovery from compressive measurements.12

2.2 Matrix Completion

In many applications, we would like to recover a matrix from only a limitedl number of observed entries. A
typical example is collaborative filtering for recommender systems, in which we wish to make predictions to
users’ preference based on the information collected so far. The NetFlix problem13 is a famous instance. The
data is a big matrix D with each entry Dij ∈ {1, · · · , 5} recording the rating of user i for movie j. There are
around 480K users and 18K movies in the data set, but only 1.2% entries have values since each user only rated
about 200 movies on average. The problem is how to predict the ratings that haven’t been made yet based on
the current observation, or in another word, how to complete the unknown entries in D.

A popular solution is to assume the rating matrix is low-rank based on the fact that a subgroup of users are
likely to share similar taste and their ratings are highly correlated. The problem then turns to be recovering a
low-rank matrix from partial observation. In turn, the following optimization problem is considered in recent
works:14,15

min
X
‖X‖∗,

s.t. PΩ(X) = PΩ(D), (6)

where Ω is the set of observed entries and PΩ denotes the projection of all matrix entries to the set of observed
entries constrained by Ω. The equality constraint in (6) means that the entries in the recovered matrix should
agree with the users’ ratings for the rated entries. Under this constraint, the other unrated entries are predicted
by minimizing the nuclear norm of the matrix X, which is the convex relaxation of rank(X). Moreover, it can
be proven that the solution to (6) will give an exact recovery of the low-rank matrix under certain conditions.14

In real applications, the rated entries in Ω might be noisy, and the equality constraint in (6) will be too strict,
resulting in over-fitting.16 Similar to Stable PCP,10 the following relaxed form of (6) is considered for matrix
completion with noise:3

min
X

1

2
‖PΩ(D−X)‖2F + λ‖X‖∗, (7)

where the parameter λ depends on the noise level.

Another popular method for collaborative filtering is named Maximum Margin Matrix Factorization (MMM-
F).17 Instead of minimizing the rank of the approximating matrix X, it factorizes X as a product of two matrices
U ∈ Rm×k and V ∈ Rn×k, and minimizes the following function

min
U,V

1

2
‖PΩ(D−UVT )‖2F +

λ

2
(‖U‖2F + ‖V‖2F ). (8)

It also fits the data with a low-rank matrix since rank(UVT ) ≤ k. More interestingly, the solution to (8) is
equivalent to the solution to (7)16 since

‖X‖∗ = min
U,V:X=UVT

1

2
(‖U‖2F + ‖V‖2F ). (9)

According to this equivalence, MMMF can also be considered as a low-rank model. The difference between
MMMF and the model in (7) is that (8) is not convex while (7) is.
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2.3 Optimization and Algorithms

Low-rank modeling usually requires rank minimization. However, the rank minimization problem (RMP) is
combinatorial and known to be NP-hard.1 A popular approach to solving RMP is replacing rank by the nuclear
norm, which is the tight convex surrogate of rank.1,18 Regarding computation, the nuclear norm has the following
property (Theorem 2.1 given in Cai et al.15):

Theorem 2.1. The solution to the following problem

min
X

1

2
‖Z−X‖2F + λ‖X‖∗ (10)

is given by X∗ = Dλ(Z), where

Dλ(Z) =

min(m,n)∑
i=1

(σi − λ)+uiv
T
i , (11)

and ui, vi and σi correspond the left singular vector, the right singular vector and the singular value of Z,
respectively. Dλ refers to the singular value thresholding (SVT) operator,15 which serves as a basic ingredient
in many algorithms. For example, the matrix completion problem in (7) is often solved by iteratively performing
SVT on the data.

Based on Theorem 2.1, different algorithms can be developed to solve different problems. Two of the most
popularly-used methods are the Proximal Gradient (PG) method19 and the Augmented Lagrangian Method
(ALM),20 which are applicable to a variety of convex problems. The PG is extremely useful to solve the norm-
regularized problems such as the model in (7), where the energy is the sum of a differentiable loss function
and a nuclear norm regularizer. Moreover, it is often combined with the Nesterov method to accelerate the
convergence.21,22 Examples using the PG method are shown in the works.16,23,24 The ALM is also named
the Alternating Direction Method of Multipliers (ADMM).25 It provides a powerful framework to solve convex
problems with equality constraints such as PCP in (4) and the model in (6). The algorithms used in the works2,26

belong to this class.

Many other works focus on the factor models,7,8, 17,27,28 where the low-rank matrix X is written as UVT ,
a product of two matrices with smaller dimensions. Therefore, the rank minimization is not required in these
problems. To estimate U and V, the alternating minimization is often used. In each iteration, only one variable
is updated with the other one fixed. Each update aims to decrease the energy function by solving a least-squares
problem or using other update rules. In practice, these methods are generally faster than the methods using
nuclear minimization. Also, it is more convenient for them to develop parallel or incremental versions of the
algorithms. The major drawbacks of these methods are the nonconvex formulations, which means that the
optimality in optimization cannot be guaranteed. Hence, the theoretical properties such as the exact recovery
of the models in (4) and (6) cannot be proven for the factor models. However, these methods perform generally
well in practice and are popularly used in applications.

3. APPLICATIONS IN COMPUTER VISION

Many objects of interest in vision problems have been modeled as having low-rank, such as images of a convex
lambertian surface under various illuminations,29 dynamic textures changing periodically,30 a group of active
contours with similar shapes,31 and multiple 3-D trajectories of feature points from a rigid moving object.32

Intuitively, the low-dimensional subspace models the common pattern underlying the data. Hence, recovering
the low-rank structure is critical to high-level tasks such as background subtraction, face recognition, and seg-
mentation. In the following, we review several typical examples based on the aforementioned models in Section 2.

Background subtraction. A direct application of Robust PCA is to model the background in video surveil-
lance, where the task is to detect objects that stand out from the background. As illustrated in papers,2,33 the
background images captured by a static camera can be naturally modeled as a low-rank matrix. Hence, the back-
ground can be recovered by PCP as the low-rank component and the foreground objects can be identified as the
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sparse component. Zhou et al.34 combined the Markov Random Field with matrix completion to achieve better
accuracy for moving object detection. He et al.35 proposed an online algorithm for background subtraction,
where the low-rank model is updated incrementally.

Face recognition. Face recognition algorithms generally require a high-quality training set to build a classifier.
However, face images in real data sets are usually corrupted by various defects such as shadows, specularities
and occlusions.2,36 It has been shown that face images of a person under various illuminations can be modeled
by a low-rank matrix.2,7, 36 If PCP is applied, the local defects could be removed as the sparse component,
while a correct description of the person’s face could be obtained from the low-rank component. This procedure
improves the quality of training data and boosts the performance of current algorithms for face recognition.36

Image alignment and rectification. Image alignment is to transform different images into the same coordinate
system. Peng et al.37 proposed to solve the problem by rank minimization based on the assumption that a batch
of aligned images should form a low-rank matrix. The parameters of transformation τ were estimated by solving

min
τ,X,E

‖X‖∗ + λ‖E‖1,

s.t. X + E = D ◦ τ, (12)

where each column of D corresponds to an image to be aligned and D◦τ indicates the images after transformation.
Zhang et al.38 applied the model (12) to generate transform-invariant low-rank textures (TILT), where D
denotes images to be rectified. The TILT can be further used in various problems such as camera calibration,
3D reconstruction, character recognition, etc.

Subspace clustering. Another extended model of PCP is the Low-Rank Representation (LLR) for subspace
clustering.39 The task is to partition data points into multiple subspaces. A popular method is spectral clustering,
where the segmentation is achieved by cutting a graph. In the graph, each node represents one pixel in the original
image and a edge represents represents the affinity between two neighboring pixels. In LLR, each data point is
represented by a linear combination of its neighbors within the same subspace, and the coefficients X is estimated
by

min
X,E

‖X‖∗ + λ‖E‖2,1,

s.t. D = DX + E. (13)

It is shown that,39 if the data points in D are from several orthogonal subspaces, X derived from (13) will
be block-diagonal. Intrinsically, X identifies the affinity among data points, and its block-diagonal structure
indicates clusters in the data. Thus, X provides a preferred affinity matrix to perform spectral clustering.

Image restoration. A popular application of matrix completion is image or video restoration. In some cases,
it is desired to reconstruct the lost or corrupted parts of an image, which might be caused by texts or logos
superposed on the image. This process is named image inpainting.40 As a natural image is approximately low-
rank,41 the missing pixels can be filled back by matrix completion. Another application is video denoising.42 To
remove the defects in a video, unreliable pixels in the video are first detected and labeled as missing. Then, the
image patches are grouped such that the patches in each group share similar underlying structure and form a
low-rank matrix approximately. Finally, the matrix completion is carried out on each patch group to restore the
image.

Other applications of low-rank modeling include saliency detection by low-rank background modeling,43 object
tracking via structured Robust PCA,44,45 block-wise partition for parsing façade via rank-one approximation,46

fusion of model scores by rank-two matrix reconstruction,47 and so on.
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4. APPLICATIONS IN MEDICAL IMAGE ANALYSIS

While low-rank modeling has been popular in the machine learning and computer vision community, the appli-
cations of low-rank modeling in medical image analysis are relatively limited. Here we give a brief summary of
these applications.

Image compression. Image compression using PCA has a long history.48 The basic idea is that most of image
contents can be described by only a few principal components, which require less storage space compared to
the original image. The number of required components depends on the compression quality required in specific
applications. For example,48 an image is partitioned into blocks, which are further classified into different region
types such as tissue or background. Then, different types of blocks are coded separately with different numbers
of components to achieve the best compression ratio. A higher compression ratio in experiments was achieved
compared to the discrete cosine transform (DCT).48 The disadvantage is the requirement to store the principal
components while the DCT doesn’t need to. However, Taur and Tao48 also stated that it was unnecessary to
store the principal components for each image since the images from the same modality have similar statistics.

Image denoising. Low-rank based image denoising shares the similar idea as image compression. A signal can
be represented by a limited number of principal components and the remaining components correspond to noise
and thus can be removed. The difference is that denoising is often carried out on a sequence of images with each
image being a column of the matrix. In MR image denoising, for example, an image sequence consists of multiple
echo images,49 a dynamic image sequence50 or multiple diffusion-weighted images.51 Nguyen et al.50 integrated
a low-rank model, a Rician noise model and an edge-preserving smoothness model in a MAP framework. In
a more recent work,52 Candes et al. used the SVT operator in (11) instead of the classical PCA to achieve
more robust results. In these methods, a theoretical framework is proposed to select the optimal thresholding
parameter, which is very convenience in practical applications. The drawback of these methods is the possibility
of removing local image details that cannot be modeled as low-rank.

Image segmentation. Active shape model53 has been widely used in medical image segmentation.54 It increases
the robustness of deformable models for image segmentation. It constructs a statistical shape space from a large
set of annotated images and constrains the candidate shape in this shape space. Concretely, each shape (e.g. the
endocardial surface of the left ventricle) is represented by a vector s = [x1, · · · , xp, y1, · · · , yp, z1, · · · , zp]T where
(xi, yi, zi) denotes a landmark on the parametric surface. In the shape space, the candidate shape is expressed
as

s(w) = s + Φw, (14)

where s is the mean shape; Φ ∈ R3p×r is a matrix consisting of vectors describing different modes of shape
variations in the training data; w is a vector of coefficients to represent the candidate shape in the shape space,
which is determined by matching the shape to the features in the image. The number of columns in Φ is often
small. Thus, the candidate shape is limited in a low-dimensional space. In other words, the active shape model
intrinsically admits a low-rank assumption on the population of shapes. Moreover, s and Φ are often obtained by
applying PCA to the shapes in the training set. The limitation of this method is the requirement of annotated
data sets for training. Also, it is often doubted that the existing shapes in the training set is sufficient to model
the object shape in a new image.

Image reconstruction. Recently, image reconstruction based on low-rank modeling draws more and more
attention. The idea is to make use of the temporal coherence in dynamic imaging to reduce the number of
sampling. In MR imaging, for example, Liang et al.55 proposed the concept of partial separability (PS) to model
a spatial-temporal MR image ρ(x, t) as

ρ(x, t) =

L∑
`=1

φ`(x)v`(t), (15)
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where {φ`(x)} and {v`(t)} for ` = 1, · · · , L are sets of spatial and temporal components to represent the image
and L is the order of the model. Correspondingly, any sample in the (k, t)-space can be expressed as c(k, t) =∑L
`=1 u`(k)v`(t), where u`(k) is the Fourier transform of φ`(x). Using matrix notations, we have

C = UV, (16)

where Cij = c(ki, tj), Ui` = u`(ki) and V`j = v`(tj). Since the images are temporally coherent, L can be very
small, which gives a low-rank model of the coefficients C in the (k, t)-space. Correspondingly, a small number
of samples are sufficient to estimate C and reconstruct the image sequence. For example, {u`(k)} and {v`(t)}
can be obtained by fully sampling L columns and rows of the (k, t)-space.55 Alternatively, C can be estimated
by random sampling the (k, t)-space followed by solving the matrix completion problem

min
U,V
‖PΩ(UV)− PΩ(D)‖2F , (17)

where PΩ indicates the sampling in a random set Ω and PΩ(D) corresponds to the measurement in Ω.

The basic PS model can be further extended to integrate other sparse properties in specific domains. The
spatial component φ`(x) (image pattern) often has a sparse representation in certain domains such as wavelets
and total variation.56–58 The temporal component v`(t) is usually periodic or bandlimited, which results in
sparsity in the Fourier domain.59,60 Also, the low-rank property can be modeled to be regionally dependent.61

Instead of using the PS model, some works57,58 impose the low-rank property by nuclear norm minimization,
which gives convex formulations. Low-rank modeling methods have also been applied to other modalities such
as CT62,63 and PET.64

5. DISCUSSIONS

The low-rank modeling is based on the coherence among multiple images. Such prior knowledge can be used
to compress images, to remove random noise, and to reduce the sampling rate in image acquisition. Recent
progresses in sparse learning and optimization provide powerful tools to model the low-rank property of data.

We noticed that the low-rank modeling was rarely used in ultrasound image analysis. Previous methods for
real-time 3-D echocardiography (RT3DE) analysis often focused on a single image or an image pair. In fact,
many objects in RT3DE analysis also form a low-dimensional space, such as appearances of myocardium in a
sequence, shapes of left ventricle throughout a cardiac cycle, and multi-view volumes in 3-D imaging.65 Such a
low dimensionality can largely reduce the complexity of analysis. Zhou et al.66 proposed an automatic algorithm
to track the mitral leaflet in echocardiography by modeling the smoothly-moving myocardium as the low-rank
background and detecting the fast-moving mitral leaflet as outliers in the low-rank representation. We believe
that the global low-rank modeling would largely improve the robustness of algorithms for cardiac image analysis.

While the low-rank modeling has shown great potentials in solving problems in computer vision and medical
image analysis, there are two main limitations for the low-rank modeling based methods.

The first limitation is the heavy computational cost. Estimation of a low-rank matrix usually needs to
solve some optimization problems. Although the problems are often convex, solving them still requires many
iterations of complicated matrix computations such as SVD or solving large linear systems. These computation
becomes more expensive when processing a sequence of 3-D volumetric images. Moreover, many applications in
medical image analysis require online processing integrated in the imaging system. Fortunately, more and more
efforts have been carried out to develop incremental or distributed algorithms to make the low-rank models more
practical.67,68

The second limitation is that the low-rank assumption might be violated. For example, the image variation
due to irregular tissue motion or abnormal respiration cannot be described by low-rank models. It is important
to validate the low-rank assumption for specific problems before applying the corresponding tools.
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